zwischenstand
This commit is contained in:
@ -40,7 +40,45 @@ class ProxyExercise < ActiveRecord::Base
|
||||
end
|
||||
|
||||
def findMatchingExercise(user)
|
||||
exercises.shuffle.first
|
||||
#exercises.shuffle.first
|
||||
exercisesUserHasAccessed = user.submissions.where(cause: :assess).map{|s| s.exercise}.uniq
|
||||
tagsUserHasSeen = exercisesUserHasAccessed.map{|ex| ex.tags}.uniq.flatten
|
||||
puts "exercisesUserHasAccessed #{exercisesUserHasAccessed}"
|
||||
|
||||
|
||||
# find execises
|
||||
potentialRecommendedExercises = []
|
||||
exercises.each do |ex|
|
||||
## find exercises which have tags the user has already seen
|
||||
if (ex.tags - tagsUserHasSeen).empty?
|
||||
potentialRecommendedExercises << ex
|
||||
end
|
||||
end
|
||||
puts "potentialRecommendedExercises: #{potentialRecommendedExercises}"
|
||||
recommendedExercise = selectBestMatchingExercise(user, exercisesUserHasAccessed, potentialRecommendedExercises)
|
||||
recommendedExercise
|
||||
end
|
||||
|
||||
def selectBestMatchingExercise(user, exercisesUserHasAccessed, potentialRecommendedExercises)
|
||||
topic_knowledge_user_and_max = getUserKnowledgeAndMaxKnowledge(user, exercisesUserHasAccessed)
|
||||
puts "topic_knowledge_user_and_max: #{topic_knowledge_user_and_max}"
|
||||
topic_knowledge_user = topic_knowledge_user_and_max[:user_topic_knowledge]
|
||||
topic_knowledge_max = topic_knowledge_user_and_max[:max_topic_knowledge]
|
||||
relative_knowledge_improvement = {}
|
||||
potentialRecommendedExercises.each do |potex|
|
||||
tags = potex.tags
|
||||
relative_knowledge_improvement[potex] = 0.0
|
||||
tags.each do |tag|
|
||||
tag_ratio = potex.exercise_tags.where(tag: tag).first.factor / potex.exercise_tags.inject(0){|sum, et| sum += et.factor }
|
||||
max_topic_knowledge_ratio = potex.expected_difficulty * tag_ratio
|
||||
old_relative_loss_tag = topic_knowledge_user[tag] / topic_knowledge_max[tag]
|
||||
new_relative_loss_tag = topic_knowledge_user[tag] / (topic_knowledge_max[tag] + max_topic_knowledge_ratio)
|
||||
relative_knowledge_improvement[potex] += new_relative_loss_tag - old_relative_loss_tag
|
||||
end
|
||||
end
|
||||
puts "relative improvements #{relative_knowledge_improvement}"
|
||||
exercise_with_greatest_improvements = relative_knowledge_improvement.max_by{|k,v| v}
|
||||
exercise_with_greatest_improvements
|
||||
end
|
||||
|
||||
# [score][quantile]
|
||||
@ -64,6 +102,8 @@ class ProxyExercise < ActiveRecord::Base
|
||||
Rails.logger.debug("scoring user #{user.id} for exercise #{ex.id}: points_ratio=#{points_ratio} score: 0" )
|
||||
return 0.0
|
||||
end
|
||||
puts points_ratio
|
||||
puts ex.maximum_score.to_f
|
||||
points_ratio_index = ((scoring_matrix.size - 1) * points_ratio).to_i
|
||||
working_time_user = Time.parse(ex.average_working_time_for_only(user.id) || "00:00:00").seconds_since_midnight
|
||||
quantiles_working_time = ex.getQuantiles(scoring_matrix_quantiles)
|
||||
@ -90,9 +130,9 @@ class ProxyExercise < ActiveRecord::Base
|
||||
user_score_factor = score(user, ex)
|
||||
ex.tags.each do |t|
|
||||
tag_ratio = ex.exercise_tags.where(tag: t).first.factor / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }
|
||||
topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
|
||||
topic_knowledge_loss_user[t] += (1 - user_score_factor) * topic_knowledge_ratio
|
||||
topic_knowledge_max[t] += topic_knowledge_ratio
|
||||
max_topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
|
||||
topic_knowledge_loss_user[t] += (1 - user_score_factor) * max_topic_knowledge_ratio
|
||||
topic_knowledge_max[t] += max_topic_knowledge_ratio
|
||||
end
|
||||
end
|
||||
relative_loss = {}
|
||||
@ -102,4 +142,21 @@ class ProxyExercise < ActiveRecord::Base
|
||||
relative_loss
|
||||
end
|
||||
|
||||
def getUserKnowledgeAndMaxKnowledge(user, exercises)
|
||||
# initialize knowledge for each tag with 0
|
||||
all_used_tags = exercises.inject(Set.new){|tagset, ex| tagset.merge(ex.tags)}
|
||||
topic_knowledge_loss_user = all_used_tags.map{|t| [t, 0]}.to_h
|
||||
topic_knowledge_max = all_used_tags.map{|t| [t, 0]}.to_h
|
||||
exercises.each do |ex|
|
||||
user_score_factor = score(user, ex)
|
||||
ex.tags.each do |t|
|
||||
tag_ratio = ex.exercise_tags.where(tag: t).first.factor / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }
|
||||
topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
|
||||
topic_knowledge_loss_user[t] += (1 - user_score_factor) * topic_knowledge_ratio
|
||||
topic_knowledge_max[t] += topic_knowledge_ratio
|
||||
end
|
||||
end
|
||||
{user_topic_knowledge: topic_knowledge_loss_user, max_topic_knowledge: topic_knowledge_max}
|
||||
end
|
||||
|
||||
end
|
Reference in New Issue
Block a user