Files
codeocean/app/models/proxy_exercise.rb

241 lines
11 KiB
Ruby

class ProxyExercise < ActiveRecord::Base
after_initialize :generate_token
after_initialize :set_reason
has_and_belongs_to_many :exercises
has_many :user_proxy_exercise_exercises
def count_files
exercises.count
end
def set_reason
@reason = {}
end
def generate_token
self.token ||= SecureRandom.hex(4)
end
private :generate_token
def duplicate(attributes = {})
proxy_exercise = dup
proxy_exercise.attributes = attributes
proxy_exercise
end
def to_s
title
end
def get_matching_exercise(user)
assigned_user_proxy_exercise = user_proxy_exercise_exercises.where(user: user).first
recommended_exercise =
if (assigned_user_proxy_exercise)
Rails.logger.debug("retrieved assigned exercise for user #{user.id}: Exercise #{assigned_user_proxy_exercise.exercise}" )
assigned_user_proxy_exercise.exercise
else
Rails.logger.debug("find new matching exercise for user #{user.id}" )
matching_exercise =
begin
find_matching_exercise(user)
rescue => e #fallback
Rails.logger.error("finding matching exercise failed. Fall back to random exercise! Error: #{$!}" )
@reason[:reason] = "fallback because of error"
@reason[:error] = "#{$!}:\n\t#{e.backtrace.join("\n\t")}"
exercises.where("expected_difficulty > 1").shuffle.first # difficulty should be > 1 to prevent dummy exercise from being chosen.
end
user.user_proxy_exercise_exercises << UserProxyExerciseExercise.create(user: user, exercise: matching_exercise, proxy_exercise: self, reason: @reason.to_json)
matching_exercise
end
recommended_exercise
end
def find_matching_exercise(user)
user_group = UserGroupSeparator.getProxyExerciseGroup(user)
case user_group
when :dummy_assigment
rec_ex = select_easiest_exercise(exercises)
@reason[:reason] = "dummy group"
Rails.logger.debug("assigned user to dummy group, and gave him exercise: #{rec_ex.title}")
rec_ex
when :random_assigment
@reason[:reason] = "random group"
ex = exercises.where("expected_difficulty > 1").shuffle.first
Rails.logger.debug("assigned user to random group, and gave him exercise: #{ex.title}")
ex
when :recommended_assignment
exercises_user_has_accessed = user.submissions.where("cause IN ('submit','assess')").map{|s| s.exercise}.uniq.compact
tags_user_has_seen = exercises_user_has_accessed.map{|ex| ex.tags}.uniq.flatten
Rails.logger.debug("exercises_user_has_accessed #{exercises_user_has_accessed.map{|e|e.id}.join(",")}")
# find exercises
potential_recommended_exercises = []
exercises.where("expected_difficulty > 1").each do |ex|
## find exercises which have only tags the user has already seen
if (ex.tags - tags_user_has_seen).empty?
potential_recommended_exercises << ex
end
end
Rails.logger.debug("potential_recommended_exercises: #{potential_recommended_exercises.map{|e|e.id}}")
# if all exercises contain tags which the user has never seen, recommend easiest exercise
if potential_recommended_exercises.empty?
Rails.logger.debug("matched easiest exercise in pool")
@reason[:reason] = "easiest exercise in pool. empty potential exercises"
select_easiest_exercise(exercises)
else
recommended_exercise = select_best_matching_exercise(user, exercises_user_has_accessed, potential_recommended_exercises)
recommended_exercise
end
end
end
private :find_matching_exercise
def select_best_matching_exercise(user, exercises_user_has_accessed, potential_recommended_exercises)
topic_knowledge_user_and_max = get_user_knowledge_and_max_knowledge(user, exercises_user_has_accessed)
Rails.logger.debug("topic_knowledge_user_and_max: #{topic_knowledge_user_and_max}")
Rails.logger.debug("potential_recommended_exercises: #{potential_recommended_exercises.size}: #{potential_recommended_exercises.map{|p| p.id}}")
topic_knowledge_user = topic_knowledge_user_and_max[:user_topic_knowledge]
topic_knowledge_max = topic_knowledge_user_and_max[:max_topic_knowledge]
current_users_knowledge_lack = {}
topic_knowledge_max.keys.each do |tag|
current_users_knowledge_lack[tag] = topic_knowledge_user[tag] / topic_knowledge_max[tag]
end
relative_knowledge_improvement = {}
potential_recommended_exercises.each do |potex|
tags = potex.tags
relative_knowledge_improvement[potex] = 0.0
Rails.logger.debug("review potential exercise #{potex.id}")
tags.each do |tag|
tag_ratio = potex.exercise_tags.where(tag: tag).first.factor.to_f / potex.exercise_tags.inject(0){|sum, et| sum += et.factor }.to_f
max_topic_knowledge_ratio = potex.expected_difficulty * tag_ratio
old_relative_loss_tag = topic_knowledge_user[tag] / topic_knowledge_max[tag]
new_relative_loss_tag = topic_knowledge_user[tag] / (topic_knowledge_max[tag] + max_topic_knowledge_ratio)
Rails.logger.debug("tag #{tag} old_relative_loss_tag #{old_relative_loss_tag}, new_relative_loss_tag #{new_relative_loss_tag}, tag_ratio #{tag_ratio}")
relative_knowledge_improvement[potex] += old_relative_loss_tag - new_relative_loss_tag
end
end
highest_difficulty_user_has_accessed = exercises_user_has_accessed.map{|e| e.expected_difficulty}.sort.last || 0
best_matching_exercise = find_best_exercise(relative_knowledge_improvement, highest_difficulty_user_has_accessed)
@reason[:reason] = "best matching exercise"
@reason[:highest_difficulty_user_has_accessed] = highest_difficulty_user_has_accessed
@reason[:current_users_knowledge_lack] = current_users_knowledge_lack
@reason[:relative_knowledge_improvement] = relative_knowledge_improvement
Rails.logger.debug("current users knowledge loss: " + current_users_knowledge_lack.map{|k,v| "#{k} => #{v}"}.to_s)
Rails.logger.debug("relative improvements #{relative_knowledge_improvement.map{|k,v| k.id.to_s + ':' + v.to_s}}")
best_matching_exercise
end
private :select_best_matching_exercise
def find_best_exercise(relative_knowledge_improvement, highest_difficulty_user_has_accessed)
Rails.logger.debug("select most appropiate exercise for user. his highest difficulty was #{highest_difficulty_user_has_accessed}")
sorted_exercises = relative_knowledge_improvement.sort_by{|k,v| v}.reverse
sorted_exercises.each do |ex,diff|
Rails.logger.debug("review exercise #{ex.id} diff: #{ex.expected_difficulty}")
if (ex.expected_difficulty - highest_difficulty_user_has_accessed) <= 1
Rails.logger.debug("matched exercise #{ex.id}")
return ex
else
Rails.logger.debug("exercise #{ex.id} is too difficult")
end
end
easiest_exercise = sorted_exercises.min_by{|k,v| v}.first
Rails.logger.debug("no match, select easiest exercise as fallback #{easiest_exercise.id}")
easiest_exercise
end
private :find_best_exercise
# [score][quantile]
def scoring_matrix
[
[0 ,0 ,0 ,0 ,0 ],
[0.2,0.2,0.2,0.2,0.1],
[0.5,0.5,0.4,0.4,0.3],
[0.6,0.6,0.5,0.5,0.4],
[1 ,1 ,0.9,0.8,0.7],
]
end
def scoring_matrix_quantiles
[0.2,0.4,0.6,0.8]
end
private :scoring_matrix_quantiles
def score(user, ex)
max_score = ex.maximum_score.to_f
if max_score <= 0
Rails.logger.debug("scoring user #{user.id} for exercise #{ex.id}: score: 0" )
return 0.0
end
points_ratio = ex.maximum_score(user) / max_score
if points_ratio == 0.0
Rails.logger.debug("scoring user #{user.id} for exercise #{ex.id}: points_ratio=#{points_ratio} score: 0" )
return 0.0
end
points_ratio_index = ((scoring_matrix.size - 1) * points_ratio).to_i
working_time_user = ex.accumulated_working_time_for_only(user)
quantiles_working_time = ex.get_quantiles(scoring_matrix_quantiles)
quantile_index = quantiles_working_time.size
quantiles_working_time.each_with_index do |quantile_time, i|
if working_time_user <= quantile_time
quantile_index = i
break
end
end
Rails.logger.debug(
"scoring user #{user.id} exercise #{ex.id}: worktime #{working_time_user}, points: #{points_ratio}" \
"(index #{points_ratio_index}) quantiles #{quantiles_working_time} placed into quantile index #{quantile_index} " \
"score: #{scoring_matrix[points_ratio_index][quantile_index]}")
scoring_matrix[points_ratio_index][quantile_index]
end
private :score
def get_user_knowledge_and_max_knowledge(user, exercises)
# initialize knowledge for each tag with 0
all_used_tags_with_count = {}
exercises.each do |ex|
ex.tags.each do |t|
all_used_tags_with_count[t] ||= 0
all_used_tags_with_count[t] += 1
end
end
tags_counter = all_used_tags_with_count.keys.map{|tag| [tag,0]}.to_h
topic_knowledge_loss_user = all_used_tags_with_count.keys.map{|t| [t, 0]}.to_h
topic_knowledge_max = all_used_tags_with_count.keys.map{|t| [t, 0]}.to_h
exercises_sorted = exercises.sort_by { |ex| ex.time_maximum_score(user)}
exercises_sorted.each do |ex|
Rails.logger.debug("exercise: #{ex.id}: #{ex}")
user_score_factor = score(user, ex)
ex.tags.each do |t|
tags_counter[t] += 1
tag_diminishing_return_factor = tag_diminishing_return_function(tags_counter[t], all_used_tags_with_count[t])
tag_ratio = ex.exercise_tags.where(tag: t).first.factor.to_f / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }.to_f
Rails.logger.debug("tag: #{t}, factor: #{ex.exercise_tags.where(tag: t).first.factor}, sumall: #{ex.exercise_tags.inject(0){|sum, et| sum += et.factor }}")
Rails.logger.debug("tag #{t}, count #{tags_counter[t]}, max: #{all_used_tags_with_count[t]}, factor: #{tag_diminishing_return_factor}")
Rails.logger.debug("tag_ratio #{tag_ratio}")
topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
Rails.logger.debug("topic_knowledge_ratio #{topic_knowledge_ratio}")
topic_knowledge_loss_user[t] += (1 - user_score_factor) * topic_knowledge_ratio * tag_diminishing_return_factor
topic_knowledge_max[t] += topic_knowledge_ratio * tag_diminishing_return_factor
end
end
{user_topic_knowledge: topic_knowledge_loss_user, max_topic_knowledge: topic_knowledge_max}
end
private :get_user_knowledge_and_max_knowledge
def tag_diminishing_return_function(count_tag, total_count_tag)
total_count_tag += 1 # bonus exercise comes on top
return 1/(1+(Math::E**(-3/(0.5*total_count_tag)*(count_tag-0.5*total_count_tag))))
end
def select_easiest_exercise(exercises)
exercises.order(:expected_difficulty).first
end
end