Files
codeocean/lib/tasks/detect_exercise_anomalies.rake
2022-11-25 11:10:06 +01:00

179 lines
7.3 KiB
Ruby

# frozen_string_literal: true
namespace :detect_exercise_anomalies do
# uncomment for debug logging:
# logger = Logger.new($stdout)
# logger.level = Logger::DEBUG
# Rails.logger = logger
# rubocop:disable Lint/ConstantDefinitionInBlock Style/MutableConstant
# These factors determine if an exercise is an anomaly, given the average working time (avg):
# (avg * MIN_TIME_FACTOR) <= working_time <= (avg * MAX_TIME_FACTOR)
MIN_TIME_FACTOR = 0.1
MAX_TIME_FACTOR = 2
# Determines how many users are picked from the best/average/worst performers of each anomaly for feedback
NUMBER_OF_USERS_PER_CLASS = 10
# Determines margin below which user working times will be considered data errors (e.g. copy/paste solutions)
MIN_USER_WORKING_TIME = 0.0
# Cache exercise working times, because queries are expensive and values do not change between collections
# rubocop:disable Style/MutableConstant
WORKING_TIME_CACHE = {}
AVERAGE_WORKING_TIME_CACHE = {}
# rubocop:enable Style/MutableConstant
# rubocop:enable Lint/ConstantDefinitionInBlock
task :with_at_least, %i[number_of_exercises number_of_users] => :environment do |_task, args|
include TimeHelper
number_of_exercises = args[:number_of_exercises]
number_of_users = args[:number_of_users]
log "Searching for exercise collections with at least #{number_of_exercises} exercises and #{number_of_users} users."
# Get all exercise collections that have at least the specified amount of exercises and at least the specified
# number of users AND are flagged for anomaly detection
collections = get_collections(number_of_exercises, number_of_users)
log "Found #{collections.length}."
collections.each do |collection|
log(collection, 1, '- ')
anomalies = find_anomalies(collection)
next unless anomalies.length.positive?
notify_collection_author(collection, anomalies) unless collection.user.nil?
notify_users(collection, anomalies)
reset_anomaly_detection_flag(collection)
end
log 'Done.'
end
def log(message = '', indent_level = 0, prefix = '')
puts(("\t" * indent_level) + "#{prefix}#{message}")
end
def get_collections(number_of_exercises, number_of_solutions)
ExerciseCollection
.where(use_anomaly_detection: true)
.joins("join exercise_collection_items eci on exercise_collections.id = eci.exercise_collection_id
join
(select e.id
from exercises e
join submissions s on s.exercise_id = e.id
group by e.id
having #{ExerciseCollection.sanitize_sql(['count(s.user_id) > ?', number_of_solutions])}
) as exercises_with_submissions on exercises_with_submissions.id = eci.exercise_id")
.group('exercise_collections.id')
.having('count(exercises_with_submissions.id) > ?', number_of_exercises)
end
def collect_working_times(collection)
working_times = {}
collection.exercise_collection_items.order(:position).each do |eci|
log(eci.exercise.title, 2, '> ')
working_times[eci.exercise.id] = get_average_working_time(eci.exercise)
end
working_times
end
def find_anomalies(collection)
working_times = collect_working_times(collection).compact
if working_times.values.size.positive?
average = working_times.values.sum / working_times.values.size
return working_times.select do |_, working_time|
working_time > average * MAX_TIME_FACTOR or working_time < average * MIN_TIME_FACTOR
end
end
{}
end
def get_average_working_time(exercise)
unless AVERAGE_WORKING_TIME_CACHE.key?(exercise.id)
seconds = time_to_f exercise.average_working_time
AVERAGE_WORKING_TIME_CACHE[exercise.id] = seconds
end
AVERAGE_WORKING_TIME_CACHE[exercise.id]
end
def get_user_working_times(exercise)
unless WORKING_TIME_CACHE.key?(exercise.id)
exercise.retrieve_working_time_statistics
WORKING_TIME_CACHE[exercise.id] = exercise.working_time_statistics
end
WORKING_TIME_CACHE[exercise.id]
end
def notify_collection_author(collection, anomalies)
log("Sending E-Mail to author (#{collection.user.displayname} <#{collection.user.email}>)...", 2)
UserMailer.exercise_anomaly_detected(collection, anomalies).deliver_now
end
def notify_users(collection, anomalies)
by_id_and_type = proc {|u| {user_id: u[:user_id], user_type: u[:user_type]} }
log('Sending E-Mails to best and worst performing users of each anomaly...', 2)
anomalies.each do |exercise_id, average_working_time|
log("Anomaly in exercise #{exercise_id} (avg: #{average_working_time} seconds):", 2)
exercise = Exercise.find(exercise_id)
users_to_notify = []
users = {}
methods = %i[performers_by_time performers_by_score]
methods.each do |method|
# merge users found by multiple methods returning a hash {best: [], worst: []}
users = users.merge(send(method, exercise, NUMBER_OF_USERS_PER_CLASS)) {|_key, this, other| this + other }
end
# write reasons for feedback emails to db
users.each_key do |key|
segment = users[key].uniq(&by_id_and_type)
users_to_notify += segment
segment.each do |user|
reason = "{\"segment\": \"#{key}\", \"feature\": \"#{user[:reason]}\", value: \"#{user[:value]}\"}"
AnomalyNotification.create(user_id: user[:user_id], user_type: user[:user_type],
exercise:, exercise_collection: collection, reason:)
end
end
users_to_notify.uniq!(&by_id_and_type)
users_to_notify.each do |u|
user = u[:user_type] == InternalUser.name ? InternalUser.find(u[:user_id]) : ExternalUser.find(u[:user_id])
host = CodeOcean::Application.config.action_mailer.default_url_options[:host]
feedback_link = Rails.application.routes.url_helpers.url_for(action: :new,
controller: :user_exercise_feedbacks, exercise_id: exercise.id, host:)
UserMailer.exercise_anomaly_needs_feedback(user, exercise, feedback_link).deliver
end
log("Asked #{users_to_notify.size} users for feedback.", 2)
end
end
def performers_by_score(exercise, users)
submissions = exercise.last_submission_per_user.where.not(score: nil).order(score: :desc)
map_block = proc {|item| {user_id: item.user_id, user_type: item.user_type, value: item.score, reason: 'score'} }
best_performers = submissions.first(users).to_a.map(&map_block)
worst_performers = submissions.last(users).to_a.map(&map_block)
{best: best_performers, worst: worst_performers}
end
def performers_by_time(exercise, users)
working_times = get_user_working_times(exercise).values.map do |item|
{user_id: item['user_id'], user_type: item['user_type'], score: item['score'].to_f,
value: time_to_f(item['working_time']), reason: 'time'}
end
avg_score = exercise.average_score
working_times.reject! do |item|
item[:value].nil? or item[:value] <= MIN_USER_WORKING_TIME or item[:score] < avg_score
end
working_times.sort_by! {|item| item[:value] }
{best: working_times.first(users), worst: working_times.last(users)}
end
def reset_anomaly_detection_flag(collection)
log('Resetting flag...', 2)
collection.use_anomaly_detection = false
collection.save!
end
end