Files
codeocean/app/models/proxy_exercise.rb
2017-03-21 10:31:32 +01:00

181 lines
8.1 KiB
Ruby

class ProxyExercise < ActiveRecord::Base
after_initialize :generate_token
has_and_belongs_to_many :exercises
has_many :user_proxy_exercise_exercises
def count_files
exercises.count
end
def generate_token
self.token ||= SecureRandom.hex(4)
end
private :generate_token
def duplicate(attributes = {})
proxy_exercise = dup
proxy_exercise.attributes = attributes
proxy_exercise
end
def to_s
title
end
def getMatchingExercise(user)
assigned_user_proxy_exercise = user_proxy_exercise_exercises.where(user: user).first
recommendedExercise =
if (assigned_user_proxy_exercise)
Rails.logger.info("retrieved assigned exercise for user #{user.id}: Exercise #{assigned_user_proxy_exercise.exercise}" )
assigned_user_proxy_exercise.exercise
else
Rails.logger.info("find new matching exercise for user #{user.id}" )
matchingExercise = findMatchingExercise(user)
user.user_proxy_exercise_exercises << UserProxyExerciseExercise.create(user: user, exercise: matchingExercise, proxy_exercise: self)
matchingExercise
end
recommendedExercise
end
def findMatchingExercise(user)
exercisesUserHasAccessed = user.submissions.where("cause IN ('submit','assess')").map{|s| s.exercise}.uniq
tagsUserHasSeen = exercisesUserHasAccessed.map{|ex| ex.tags}.uniq.flatten
Rails.logger.info("exercisesUserHasAccessed #{exercisesUserHasAccessed.map{|e|e.id}.join(",")}")
# find execises
potentialRecommendedExercises = []
exercises.each do |ex|
## find exercises which have only tags the user has already seen
if (ex.tags - tagsUserHasSeen).empty?
potentialRecommendedExercises << ex
end
end
Rails.logger.info("potentialRecommendedExercises: #{potentialRecommendedExercises.map{|e|e.id}}")
# if all exercises contain tags which the user has never seen, recommend easiest exercise
if potentialRecommendedExercises.empty?
getEasiestExercise(exercises)
else
recommendedExercise = selectBestMatchingExercise(user, exercisesUserHasAccessed, potentialRecommendedExercises)
recommendedExercise
end
end
def selectBestMatchingExercise(user, exercisesUserHasAccessed, potentialRecommendedExercises)
topic_knowledge_user_and_max = getUserKnowledgeAndMaxKnowledge(user, exercisesUserHasAccessed)
puts "topic_knowledge_user_and_max: #{topic_knowledge_user_and_max}"
puts "potentialRecommendedExercises: #{potentialRecommendedExercises.size}: #{potentialRecommendedExercises.map{|p| p.id}}"
topic_knowledge_user = topic_knowledge_user_and_max[:user_topic_knowledge]
topic_knowledge_max = topic_knowledge_user_and_max[:max_topic_knowledge]
current_users_knowledge_lack = {}
topic_knowledge_max.keys.each do |tag|
current_users_knowledge_lack[tag] = topic_knowledge_user[tag] / topic_knowledge_max[tag]
end
relative_knowledge_improvement = {}
potentialRecommendedExercises.each do |potex|
tags = potex.tags
relative_knowledge_improvement[potex] = 0.0
Rails.logger.info("review potential exercise #{potex.id}")
tags.each do |tag|
tag_ratio = potex.exercise_tags.where(tag: tag).first.factor.to_f / potex.exercise_tags.inject(0){|sum, et| sum += et.factor }.to_f
max_topic_knowledge_ratio = potex.expected_difficulty * tag_ratio
old_relative_loss_tag = topic_knowledge_user[tag] / topic_knowledge_max[tag]
new_relative_loss_tag = topic_knowledge_user[tag] / (topic_knowledge_max[tag] + max_topic_knowledge_ratio)
puts "tag #{tag} old_relative_loss_tag #{old_relative_loss_tag}, new_relative_loss_tag #{new_relative_loss_tag}, min_loss_after_solving #{topic_knowledge_max[tag] + max_topic_knowledge_ratio} tag_ratio #{tag_ratio}"
relative_knowledge_improvement[potex] += old_relative_loss_tag - new_relative_loss_tag
end
end
best_matching_exercise = relative_knowledge_improvement.max_by{|k,v| v}.first
Rails.logger.info("current users knowledge loss: " + current_users_knowledge_lack.map{|k,v| "#{k} => #{v}"})
Rails.logger.info("relative improvements #{relative_knowledge_improvement.map{|k,v| k.id.to_s + ':' + v.to_s}}")
best_matching_exercise
end
# [score][quantile]
def scoring_matrix
[
[0 ,0 ,0 ,0 ,0 ],
[0.2,0.2,0.2,0.2,0.1],
[0.5,0.5,0.4,0.4,0.3],
[0.6,0.6,0.5,0.5,0.4],
[1 ,1 ,0.9,0.8,0.7],
]
end
def scoring_matrix_quantiles
[0.2,0.4,0.6,0.8]
end
def score(user, ex)
points_ratio = ex.maximum_score(user) / ex.maximum_score.to_f
if points_ratio == 0.0
Rails.logger.debug("scoring user #{user.id} for exercise #{ex.id}: points_ratio=#{points_ratio} score: 0" )
return 0.0
end
points_ratio_index = ((scoring_matrix.size - 1) * points_ratio).to_i
working_time_user = Time.parse(ex.average_working_time_for_only(user.id) || "00:00:00").seconds_since_midnight
quantiles_working_time = ex.getQuantiles(scoring_matrix_quantiles)
quantile_index = quantiles_working_time.size
quantiles_working_time.each_with_index do |quantile_time, i|
if working_time_user <= quantile_time
quantile_index = i
break
end
end
Rails.logger.debug(
"scoring user #{user.id} exercise #{ex.id}: worktime #{working_time_user}, points: #{points_ratio}" \
"(index #{points_ratio_index}) quantiles #{quantiles_working_time} placed into quantile index #{quantile_index} " \
"score: #{scoring_matrix[points_ratio_index][quantile_index]}")
scoring_matrix[points_ratio_index][quantile_index]
end
def getRelativeKnowledgeLoss(user, exercises)
# initialize knowledge for each tag with 0
all_used_tags = exercises.inject(Set.new){|tagset, ex| tagset.merge(ex.tags)}
topic_knowledge_loss_user = all_used_tags.map{|t| [t, 0]}.to_h
topic_knowledge_max = all_used_tags.map{|t| [t, 0]}.to_h
exercises.each do |ex|
user_score_factor = score(user, ex)
ex.tags.each do |t|
tag_ratio = ex.exercise_tags.where(tag: t).first.factor / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }
max_topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
topic_knowledge_loss_user[t] += (1 - user_score_factor) * max_topic_knowledge_ratio
topic_knowledge_max[t] += max_topic_knowledge_ratio
end
end
relative_loss = {}
all_used_tags.each do |t|
relative_loss[t] = topic_knowledge_loss_user[t] / topic_knowledge_max[t]
end
relative_loss
end
def getUserKnowledgeAndMaxKnowledge(user, exercises)
# initialize knowledge for each tag with 0
all_used_tags = exercises.inject(Set.new){|tagset, ex| tagset.merge(ex.tags)}
topic_knowledge_loss_user = all_used_tags.map{|t| [t, 0]}.to_h
topic_knowledge_max = all_used_tags.map{|t| [t, 0]}.to_h
exercises.each do |ex|
Rails.logger.info("exercise: #{ex.id}: #{ex}")
user_score_factor = score(user, ex)
ex.tags.each do |t|
tag_ratio = ex.exercise_tags.where(tag: t).first.factor.to_f / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }.to_f
Rails.logger.info("tag: #{t}, factor: #{ex.exercise_tags.where(tag: t).first.factor}, sumall: #{ex.exercise_tags.inject(0){|sum, et| sum += et.factor }}")
Rails.logger.info("tag_ratio #{tag_ratio}")
topic_knowledge_ratio = ex.expected_difficulty * tag_ratio
Rails.logger.info("topic_knowledge_ratio #{topic_knowledge_ratio}")
topic_knowledge_loss_user[t] += (1 - user_score_factor) * topic_knowledge_ratio
topic_knowledge_max[t] += topic_knowledge_ratio
end
end
{user_topic_knowledge: topic_knowledge_loss_user, max_topic_knowledge: topic_knowledge_max}
end
def getEasiestExercise(exercises)
exercises.order(:expected_difficulty).first
end
end