84 lines
2.5 KiB
Ruby
84 lines
2.5 KiB
Ruby
class ProxyExercise < ActiveRecord::Base
|
|
|
|
after_initialize :generate_token
|
|
|
|
has_and_belongs_to_many :exercises
|
|
has_many :user_proxy_exercise_exercises
|
|
|
|
def count_files
|
|
exercises.count
|
|
end
|
|
|
|
def generate_token
|
|
self.token ||= SecureRandom.hex(4)
|
|
end
|
|
private :generate_token
|
|
|
|
def duplicate(attributes = {})
|
|
proxy_exercise = dup
|
|
proxy_exercise.attributes = attributes
|
|
proxy_exercise
|
|
end
|
|
|
|
def to_s
|
|
title
|
|
end
|
|
|
|
def selectMatchingExercise(user)
|
|
assigned_user_proxy_exercise = user_proxy_exercise_exercises.where(user: user).first
|
|
recommendedExercise =
|
|
if (assigned_user_proxy_exercise)
|
|
Rails.logger.info("retrieved assigned exercise for user #{user.id}: Exercise #{assigned_user_proxy_exercise.exercise}" )
|
|
assigned_user_proxy_exercise.exercise
|
|
else
|
|
Rails.logger.info("find new matching exercise for user #{user.id}" )
|
|
matchingExercise = findMatchingExercise(user)
|
|
user.user_proxy_exercise_exercises << UserProxyExerciseExercise.create(user: user, exercise: matchingExercise, proxy_exercise: self)
|
|
matchingExercise
|
|
end
|
|
recommendedExercise
|
|
end
|
|
|
|
def findMatchingExercise(user)
|
|
exercises.shuffle.first
|
|
end
|
|
|
|
# [score][quantile]
|
|
def scoring_matrix
|
|
[
|
|
[0 ,0 ,0 ,0 ,0 ],
|
|
[0.2,0.2,0.2,0.2,0.1],
|
|
[0.5,0.5,0.4,0.4,0.3],
|
|
[0.6,0.6,0.5,0.5,0.4],
|
|
[1 ,1 ,0.9,0.8,0.7],
|
|
]
|
|
end
|
|
|
|
def score(user, ex)
|
|
points_ratio = ex.maximum_score(user) / ex.maximum_score.to_f
|
|
working_time_user = Time.parse(ex.average_working_time_for_only(user.id) || "00:00:00")
|
|
scoring_matrix = scoring_matrix
|
|
|
|
end
|
|
|
|
def getRelativeKnowledgeLoss(user, execises)
|
|
# initialize knowledge for each tag with 0
|
|
topic_knowledge_loss_user = Tag.all.map{|t| [t, 0]}.to_h
|
|
topic_knowledge_max = Tag.all.map{|t| [t, 0]}.to_h
|
|
execises.each do |ex|
|
|
score = score(user, ex)
|
|
ex.tags.each do |t|
|
|
tag_ratio = ex.exercise_tags.where(tag: t).factor / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }
|
|
topic_knowledge = ex.expected_difficulty * tag_ratio
|
|
topic_knowledge_loss_user[t] += (1-score) * topic_knowledge
|
|
topic_knowledge_max[t] += topic_knowledge
|
|
end
|
|
end
|
|
relative_loss = {}
|
|
topic_knowledge_max.keys.each do |t|
|
|
relative_loss[t] = topic_knowledge_loss_user[t] / topic_knowledge_max[t]
|
|
end
|
|
relative_loss
|
|
end
|
|
|
|
end |