Files
codeocean/app/models/proxy_exercise.rb
2017-03-21 10:31:32 +01:00

84 lines
2.5 KiB
Ruby

class ProxyExercise < ActiveRecord::Base
after_initialize :generate_token
has_and_belongs_to_many :exercises
has_many :user_proxy_exercise_exercises
def count_files
exercises.count
end
def generate_token
self.token ||= SecureRandom.hex(4)
end
private :generate_token
def duplicate(attributes = {})
proxy_exercise = dup
proxy_exercise.attributes = attributes
proxy_exercise
end
def to_s
title
end
def selectMatchingExercise(user)
assigned_user_proxy_exercise = user_proxy_exercise_exercises.where(user: user).first
recommendedExercise =
if (assigned_user_proxy_exercise)
Rails.logger.info("retrieved assigned exercise for user #{user.id}: Exercise #{assigned_user_proxy_exercise.exercise}" )
assigned_user_proxy_exercise.exercise
else
Rails.logger.info("find new matching exercise for user #{user.id}" )
matchingExercise = findMatchingExercise(user)
user.user_proxy_exercise_exercises << UserProxyExerciseExercise.create(user: user, exercise: matchingExercise, proxy_exercise: self)
matchingExercise
end
recommendedExercise
end
def findMatchingExercise(user)
exercises.shuffle.first
end
# [score][quantile]
def scoring_matrix
[
[0 ,0 ,0 ,0 ,0 ],
[0.2,0.2,0.2,0.2,0.1],
[0.5,0.5,0.4,0.4,0.3],
[0.6,0.6,0.5,0.5,0.4],
[1 ,1 ,0.9,0.8,0.7],
]
end
def score(user, ex)
points_ratio = ex.maximum_score(user) / ex.maximum_score.to_f
working_time_user = Time.parse(ex.average_working_time_for_only(user.id) || "00:00:00")
scoring_matrix = scoring_matrix
end
def getRelativeKnowledgeLoss(user, execises)
# initialize knowledge for each tag with 0
topic_knowledge_loss_user = Tag.all.map{|t| [t, 0]}.to_h
topic_knowledge_max = Tag.all.map{|t| [t, 0]}.to_h
execises.each do |ex|
score = score(user, ex)
ex.tags.each do |t|
tag_ratio = ex.exercise_tags.where(tag: t).factor / ex.exercise_tags.inject(0){|sum, et| sum += et.factor }
topic_knowledge = ex.expected_difficulty * tag_ratio
topic_knowledge_loss_user[t] += (1-score) * topic_knowledge
topic_knowledge_max[t] += topic_knowledge
end
end
relative_loss = {}
topic_knowledge_max.keys.each do |t|
relative_loss[t] = topic_knowledge_loss_user[t] / topic_knowledge_max[t]
end
relative_loss
end
end