Grafana as Code

Transfer our dashboard into a code representation via grafanalib.
This commit is contained in:
Maximilian Paß
2022-10-26 16:51:56 +01:00
parent b98e3deb40
commit 44aa5d73a2
31 changed files with 745 additions and 1746 deletions

2
deploy/grafana-dashboard/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
# Ignore the generated json encoded dashboard.
./main.json

View File

@ -0,0 +1,16 @@
# Grafana Dashboard Deployment
## Grafanalib
We use [Grafanalib](https://github.com/weaveworks/grafanalib) for the definition of our dashboard.
You need to install the python package: `pip install grafanalib`.
### Generation
Generate the Grafana dashboard by running `main.py`.
The generated Json definition can be imported in the Grafana UI.
### Deployment
You can copy the generated json into the field under the dashboards setting -> "JSON Model".
The version number needs to match!

View File

@ -0,0 +1,51 @@
from grafanalib.core import RowPanel, BarGauge, GridPos, TimeSeries, ORIENTATION_VERTICAL, \
GAUGE_DISPLAY_MODE_BASIC
from grafanalib.influxdb import InfluxDBTarget
from util import read_query
prewarming_pool_size = BarGauge(
title="Prewarming Pool Size",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("prewarming-pool-size"))],
gridPos=GridPos(h=10, w=11, x=0, y=3),
allValues=True,
orientation=ORIENTATION_VERTICAL,
displayMode=GAUGE_DISPLAY_MODE_BASIC,
max=None,
)
idle_runner = TimeSeries(
title="Idle Runner",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("idle-runner"))],
gridPos=GridPos(h=10, w=13, x=11, y=3),
lineInterpolation="stepAfter",
)
runner_startup_duration = TimeSeries(
title="Runner startup duration",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("runner-startup-duration"))],
gridPos=GridPos(h=10, w=12, x=0, y=13),
unit="ns",
)
used_runner = TimeSeries(
title="Used Runner",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("used-runner"))],
gridPos=GridPos(h=10, w=12, x=12, y=13),
)
availability_row = RowPanel(
title="Availability",
collapsed=True,
gridPos=GridPos(h=1, w=24, x=0, y=2),
panels=[
prewarming_pool_size,
idle_runner,
runner_startup_duration,
used_runner
]
)

View File

@ -0,0 +1,21 @@
def color_mapping(name, color):
return {
"fieldConfig": {
"overrides": [{
"matcher": {
"id": "byName",
"options": name
},
"properties": [{
"id": "color",
"value": {
"fixedColor": color,
"mode": "fixed"
}
}]
}]
}
}
grey_all_mapping = color_mapping("all", "#4c4b5a")

View File

@ -0,0 +1,112 @@
from grafanalib.core import RowPanel, GridPos, Stat, TimeSeries, Heatmap, BarGauge, GAUGE_DISPLAY_MODE_GRADIENT
from grafanalib.influxdb import InfluxDBTarget
from color_mapping import grey_all_mapping
from util import read_query
requests_per_minute = TimeSeries(
title="Requests per minute",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("requests-per-minute"))],
gridPos=GridPos(h=9, w=8, x=0, y=1),
scaleDistributionType="log",
extraJson=grey_all_mapping
)
request_latency = Heatmap(
title="Request Latency",
dataSource='Poseidon',
dataFormat="timeseries",
targets=[InfluxDBTarget(query=read_query("request-latency"))],
gridPos=GridPos(h=9, w=8, x=8, y=1),
extraJson={
"options": {},
"yAxis": {
"format": "ns"
}
}
)
service_time = TimeSeries(
title="Service time (99.9%)",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("service-time"))],
gridPos=GridPos(h=9, w=8, x=16, y=1),
scaleDistributionType="log",
scaleDistributionLog=10,
unit="ns"
)
current_environment_count = Stat(
title="Current environment count",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("current-environment-count"))],
gridPos=GridPos(h=6, w=8, x=0, y=10),
alignment='center'
)
currently_used_runners = Stat(
title="Currently used runners",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("currently-used-runners"))],
gridPos=GridPos(h=6, w=8, x=8, y=10),
alignment="center"
)
number_of_executions = BarGauge(
title="Number of Executions",
dataSource="Poseidon",
targets=[InfluxDBTarget(query=read_query("number-of-executions"))],
gridPos=GridPos(h=6, w=8, x=16, y=10),
allValues=True,
displayMode=GAUGE_DISPLAY_MODE_GRADIENT,
max=None,
)
execution_duration = BarGauge(
title="Execution duration",
dataSource="Poseidon",
targets=[InfluxDBTarget(query=read_query("execution-duration"))],
gridPos=GridPos(h=11, w=8, x=0, y=16),
allValues=True,
displayMode=GAUGE_DISPLAY_MODE_GRADIENT,
format="ns",
max=None,
)
executions_per_runner = BarGauge(
title="Executions per runner",
dataSource="Poseidon",
targets=[InfluxDBTarget(query=read_query("executions-per-runner"))],
gridPos=GridPos(h=11, w=8, x=8, y=16),
allValues=True,
displayMode=GAUGE_DISPLAY_MODE_GRADIENT,
max=None,
)
executions_per_minute = BarGauge(
title="Executions per minute",
dataSource="Poseidon",
targets=[InfluxDBTarget(query=read_query("executions-per-minute"))],
gridPos=GridPos(h=11, w=8, x=16, y=16),
allValues=True,
displayMode=GAUGE_DISPLAY_MODE_GRADIENT,
max=None,
)
general_row = RowPanel(
title="General",
collapsed=True,
gridPos=GridPos(h=1, w=24, x=0, y=0),
panels=[
requests_per_minute,
request_latency,
service_time,
current_environment_count,
currently_used_runners,
number_of_executions,
execution_duration,
executions_per_runner,
executions_per_minute
]
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
#!/usr/bin/python3
from grafanalib._gen import generate_dashboard
if __name__ == '__main__':
generate_dashboard(args=['-o', 'main.json', 'poseidon.dashboard.py'])

View File

@ -0,0 +1,25 @@
from grafanalib.core import Dashboard, Templating, Time
from availability_row import availability_row
from general_row import general_row
from runner_insights_row import runner_insights_row
from variables import stage_variable, environment_variable
dashboard = Dashboard(
title="Poseidon autogen",
timezone="browser",
panels=[
general_row,
runner_insights_row,
availability_row
],
templating=Templating(list=[
stage_variable,
environment_variable
]),
editable=True,
refresh="30s",
time=Time('now-6h', 'now'),
uid="P21Bh1SVk",
version=1
).auto_panel_ids()

View File

@ -0,0 +1,19 @@
import "date"
// The need for the date truncation is caused by Poseidon sending all influx events at the same time when starting up. This way not the last but a random value is displayed.
// Since in this startup process the highest value is the correct one, we choose the highest value of the last events.
data = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> group(columns: ["stage"], mode:"by")
|> map(fn: (r) => ({ r with _time: date.truncate(t: r._time, unit: 1m) }))
deploy_times = data
|> last()
|> keep(columns: ["stage", "_time"])
join(tables: {key1: data, key2: deploy_times}, on: ["stage", "_time"], method: "inner")
|> max()
|> keep(columns: ["stage", "_value"])
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,8 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "poseidon_used_runners")
|> filter(fn: (r) => r["_field"] == "count")
|> group(columns: ["stage"], mode:"by")
|> last()
|> keep(columns: ["_value", "stage"])
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,6 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> keep(columns: ["environment_id"])
|> distinct(column: "environment_id")
|> keep(columns: ["_value"])

View File

@ -0,0 +1,27 @@
import "strings"
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => r["_measurement"] == "poseidon_/execute" or r["_measurement"] == "poseidon_/files" or r["_measurement"] == "poseidon_/websocket")
|> filter(fn: (r) => exists r.environment_id)
|> keep(columns: ["_time", "_value", "environment_id", "stage"])
|> aggregateWindow(every: v.windowPeriod, fn: mean)
|> map(fn: (r) => ({r with _value: r._value * 3.0})) // Each execution has three requests
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,28 @@
import "strings"
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> filter(fn: (r) => r["_measurement"] == "poseidon_/execute" or r["_measurement"] == "poseidon_/files" or r["_measurement"] == "poseidon_/websocket")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => exists r.environment_id)
|> keep(columns: ["_value", "runner_id", "environment_id", "stage"])
|> group(columns: ["environment_id", "stage"])
|> mean()
|> map(fn: (r) => ({r with _value: r._value * 3.0})) // Each execution has three requests
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,27 @@
import "strings"
import "date"
result = from(bucket: "poseidon/autogen")
|> range(start: date.truncate(t: v.timeRangeStart, unit: 1m), stop: date.truncate(t: v.timeRangeStop, unit: 1m))
|> filter(fn: (r) => r["_measurement"] == "poseidon_aws_executions" or r["_measurement"] == "poseidon_nomad_executions")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["environment_id", "stage"], mode:"by")
|> aggregateWindow(every: 1m, fn: count, createEmpty: true)
|> aggregateWindow(every: duration(v: int(v: v.windowPeriod) * 5), fn: mean, createEmpty: true)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,28 @@
import "date"
import "strings"
data = from(bucket: "poseidon/autogen")
|> range(start: date.truncate(t: v.timeRangeStart, unit: 1m), stop: date.truncate(t: v.timeRangeStop, unit: 1m))
|> filter(fn: (r) => r["_measurement"] == "poseidon_aws_executions" or r["_measurement"] == "poseidon_nomad_executions")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["environment_id", "stage"], mode:"by")
|> aggregateWindow(every: 1m, fn: count, createEmpty: true)
|> keep(columns: ["_value", "environment_id", "stage"])
|> mean()
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: data, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,37 @@
import "strings"
data = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
runner_deletions = data
|> filter(fn: (r) => r["_measurement"] == "poseidon_used_runners")
|> filter(fn: (r) => r["event_type"] == "deletion")
|> keep(columns: ["_time", "id", "stage"])
|> rename(columns: {id: "runner_id"})
executions = data
|> filter(fn: (r) => r["_measurement"] == "poseidon_nomad_executions" or r["_measurement"] == "poseidon_aws_executions")
|> filter(fn: (r) => r["event_type"] == "creation")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> keep(columns: ["_value", "environment_id", "runner_id"])
|> count()
result = join(tables: {key1: executions, key2: runner_deletions}, on: ["runner_id"], method: "inner")
|> keep(columns: ["_value", "_time", "environment_id", "stage"])
|> aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: false)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,37 @@
import "strings"
data = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
runner_deletions = data
|> filter(fn: (r) => r["_measurement"] == "poseidon_used_runners")
|> filter(fn: (r) => r["event_type"] == "deletion")
|> keep(columns: ["id", "stage"])
|> rename(columns: {id: "runner_id"})
executions = data
|> filter(fn: (r) => r["_measurement"] == "poseidon_nomad_executions" or r["_measurement"] == "poseidon_aws_executions")
|> filter(fn: (r) => r["event_type"] == "creation")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> keep(columns: ["_value", "environment_id", "runner_id"])
|> count()
result = join(tables: {key1: executions, key2: runner_deletions}, on: ["runner_id"], method: "inner")
|> keep(columns: ["_value", "environment_id", "stage"])
|> mean()
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,25 @@
import "strings"
myWindowPeriod = if int(v: v.windowPeriod) >= int(v: 30s) then duration(v: int(v: v.windowPeriod) * 5) else v.windowPeriod
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "poseidon_nomad_idle_runners" and r["_field"] == "count")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_value", "_time", "environment_id", "stage"])
|> aggregateWindow(every: myWindowPeriod, fn: min, createEmpty: false)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,26 @@
import "strings"
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "poseidon_aws_executions" or r["_measurement"] == "poseidon_nomad_executions")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["environment_id", "stage"], mode:"by")
|> count()
|> keep(columns: ["_value", "environment_id", "stage"])
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["isDeletion"] == "false")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,25 @@
import "strings"
result = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_poolsize")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> group(columns: ["environment_id", "stage"], mode:"by")
|> last()
|> keep(columns: ["_value", "environment_id", "stage"])
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,25 @@
import "strings"
myWindowPeriod = if int(v: v.windowPeriod) > int(v: 1m) then duration(v: int(v: v.windowPeriod) * 10) else duration(v: int(v: v.windowPeriod) * 5)
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "request_size")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_time", "_value", "environment_id", "stage"])
|> aggregateWindow(every: myWindowPeriod, fn: mean, createEmpty: false)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,7 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_time", "_value"])
|> aggregateWindow(every: v.windowPeriod, fn: mean)

View File

@ -0,0 +1,17 @@
import "date"
data = from(bucket: "poseidon/autogen")
|> range(start: date.truncate(t: v.timeRangeStart, unit: 1m), stop: date.truncate(t: v.timeRangeStop, unit: 1m))
|> filter(fn: (r) => r._field == "duration")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_time", "_value", "status"])
all = data |> set(key: "status", value: "all")
result = union(tables: [data, all])
|> aggregateWindow(every: 1m, fn: count, createEmpty: true)
if int(v: v.windowPeriod) > int(v: 1m)
then result |> aggregateWindow(every: duration(v: int(v: v.windowPeriod) * 2), fn: mean, createEmpty: true)
else result |> aggregateWindow(every: duration(v: int(v: v.windowPeriod) * 5), fn: mean, createEmpty: false)

View File

@ -0,0 +1,29 @@
import "strings"
import "date"
myWindowPeriod = if int(v: v.windowPeriod) > int(v: 2m) then duration(v: int(v: v.windowPeriod) * 30) else duration(v: int(v: v.windowPeriod) * 15)
result = from(bucket: "poseidon/autogen")
|> range(start: date.truncate(t: v.timeRangeStart, unit: 1m), stop: date.truncate(t: v.timeRangeStop, unit: 1m))
|> filter(fn: (r) => r["_measurement"] == "poseidon_used_runners")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["environment_id", "stage"], mode:"by")
|> aggregateWindow(every: 1m, fn: count, createEmpty: true)
|> keep(columns: ["_value", "_time", "environment_id", "stage"])
|> aggregateWindow(every: myWindowPeriod, fn: mean, createEmpty: true)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,25 @@
import "strings"
result = from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "poseidon_nomad_idle_runners")
|> filter(fn: (r) => r["_field"] == "startup_duration")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_value", "_time", "environment_id", "stage"])
|> aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: false)
envMapping = from(bucket: "poseidon/autogen")
|> range(start: -1y)
|> filter(fn: (r) => r["_measurement"] == "poseidon_environments")
|> filter(fn: (r) => r["event_type"] == "creation")
|> group(columns: ["id", "stage"], mode:"by")
|> last()
|> keep(columns: ["id", "image", "stage"])
|> rename(columns: {id: "environment_id"})
|> map(fn: (r) => ({ r with image: strings.trimPrefix(v: r.image, prefix: "openhpi/co_execenv_") + "(" + strings.substring(v: r.stage, start: 0, end: 1) + r.environment_id + ")" }))
join(tables: {key1: result, key2: envMapping}, on: ["environment_id", "stage"], method: "inner")
|> keep(columns: ["_value", "image", "_time"])
|> group(columns: ["image"], mode: "by")
|> rename(columns: {_value: ""})

View File

@ -0,0 +1,7 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> filter(fn: (r) => contains(value: r["environment_id"], set: ${environment_ids:json}))
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> keep(columns: ["_time", "_value", "_measurement"])
|> aggregateWindow(every: duration(v: int(v: v.windowPeriod) * 10), fn: (tables=<-, column) => tables |> quantile(q: 0.999))

View File

@ -0,0 +1,6 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_field"] == "duration")
|> keep(columns: ["stage"])
|> distinct(column: "stage")
|> keep(columns: ["_value"])

View File

@ -0,0 +1,8 @@
from(bucket: "poseidon/autogen")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "poseidon_used_runners")
|> filter(fn: (r) => r["_field"] == "count")
|> filter(fn: (r) => (not exists r.stage) or contains(value: r["stage"], set: ${stages:json}))
|> group(columns: ["stage"], mode:"by")
|> keep(columns: ["_value", "_time", "stage"])
|> aggregateWindow(every: duration(v: int(v: v.windowPeriod) * 5), fn: mean, createEmpty: false)

View File

@ -0,0 +1,66 @@
from grafanalib.core import RowPanel, GridPos, Histogram, TimeSeries
from grafanalib.influxdb import InfluxDBTarget
from util import read_query
execution_duration_extra_json = {
"fieldConfig": {
"defaults": {
"unit": "ns"
}
}
}
execution_duration = Histogram(
title="Execution duration",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("execution-duration-hist"))],
gridPos=GridPos(h=8, w=24, x=0, y=2),
bucketSize=100000000,
colorMode="palette-classic",
extraJson=execution_duration_extra_json
)
executions_per_runner = Histogram(
title="Executions per runner",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("executions-per-runner-hist"))],
gridPos=GridPos(h=10, w=11, x=0, y=10),
bucketSize=1,
colorMode="palette-classic",
)
executions_per_minute = TimeSeries(
title="Executions per minute",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("executions-per-minute-time"))],
gridPos=GridPos(h=10, w=13, x=11, y=10),
)
request_body_size = TimeSeries(
title="Request Body Size",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("request-body-size"))],
gridPos=GridPos(h=10, w=11, x=0, y=20),
scaleDistributionType="log",
unit="bytes",
)
runner_per_minute = TimeSeries(
title="Runner per minute",
dataSource='Poseidon',
targets=[InfluxDBTarget(query=read_query("runner-per-minute"))],
gridPos=GridPos(h=10, w=13, x=11, y=20),
)
runner_insights_row = RowPanel(
title="Runner Insights",
collapsed=True,
gridPos=GridPos(h=1, w=24, x=0, y=1),
panels=[
execution_duration,
executions_per_runner,
executions_per_minute,
request_body_size,
runner_per_minute
]
)

View File

@ -0,0 +1,5 @@
def read_query(name):
with open("queries/" + name + ".flux", 'r') as file:
return file.read()

View File

@ -0,0 +1,25 @@
from grafanalib.core import Template
from util import read_query
stage_variable = Template(
dataSource="Poseidon",
label="Stage",
name="stages",
query=read_query("stages"),
refresh=1,
includeAll=True,
multi=True,
default="production"
)
environment_variable = Template(
dataSource="Poseidon",
label="Environment IDs",
name="environment_ids",
query=read_query("environment-ids"),
refresh=1,
includeAll=True,
multi=True,
default="$__all"
)