init commit

This commit is contained in:
Elmar Kresse
2025-07-04 22:25:08 +02:00
commit 698f4df450
6 changed files with 3279 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

2695
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

21
Cargo.toml Normal file
View File

@ -0,0 +1,21 @@
[package]
name = "procedu"
version = "0.1.0"
edition = "2024"
[lib]
crate-type = ["cdylib", "rlib"]
[[bin]]
name = "precdu"
path = "src/main.rs"
[dependencies]
anyhow = "1.0.98"
winit = { version = "0.30.11" }
env_logger = "0.11.8"
log = "0.4.27"
wgpu = "25.0.2"
pollster = "0.4.0"
bytemuck = { version = "1.18", features = ["derive"] }
rand = "0.9.1"

1
src/lib.rs Normal file
View File

@ -0,0 +1 @@
// Empty library file to satisfy Cargo.toml configuration

529
src/main.rs Normal file
View File

@ -0,0 +1,529 @@
use anyhow::Result;
use bytemuck::{Pod, Zeroable};
use std::sync::Arc;
use std::time::Instant;
use wgpu::util::DeviceExt;
use winit::{
application::ApplicationHandler,
event::{ElementState, KeyEvent, WindowEvent},
event_loop::{ActiveEventLoop, ControlFlow, EventLoop},
keyboard::{KeyCode, PhysicalKey},
window::{Window, WindowId},
};
#[repr(C)] // Vertex structure for the ball
#[derive(Copy, Clone, Debug, Pod, Zeroable)] // Ensure the structure is compatible with GPU memory layout
// Represents a vertex with position and color
struct Vertex {
position: [f32; 3], // 3D position of the vertex <-- x, y, z
color: [f32; 3], // Color of the vertex in RGB format <-- r, g, b
}
impl Vertex {
fn desc() -> wgpu::VertexBufferLayout<'static> { // Returns the vertex buffer layout for the Vertex structure - VertexBufferLayout Specifies an interpretation of the bytes of a vertex buffer as vertex attributes.
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress, // The size of a single vertex in bytes
step_mode: wgpu::VertexStepMode::Vertex, // Indicates that each vertex has its own attributes if `VertexStepMode::Vertex` is used, or that the attributes are shared across instances if `VertexStepMode::Instance` is used.
// Specifies the attributes of the vertex buffer
attributes: &[
// first attribute: position
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3, // The format of the position attribute is a 3D vector of floats (x, y, z)
},
// second attribute: color
wgpu::VertexAttribute {
offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x3,
},
],
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, Pod, Zeroable)]
struct Uniforms {
transform: [[f32; 4]; 4],
}
impl Uniforms {
fn new() -> Self {
Self {
transform: [
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
}
}
fn update_position(&mut self, x: f32, y: f32) {
self.transform[3][0] = x;
self.transform[3][1] = y;
}
}
struct Ball {
position: [f32; 2],
velocity: [f32; 2],
radius: f32,
color: [f32; 3], // RGB color
}
impl Ball {
fn new() -> Self {
Self {
position: [0.0, 0.0], // Initial position at the center
velocity: [0.5, 0.5], // Initial velocity <-- x, y
radius: 0.1, // Radius of the ball
color: [1.0, 0.5, 0.2], // Orange color
}
}
fn update(&mut self, dt: f32, window_width: f32, window_height: f32) {
// Update position
self.position[0] += self.velocity[0] * dt; // Update x position
self.position[1] += self.velocity[1] * dt; // Update y position
// Convert window dimensions to normalized coordinates
let aspect_ratio = window_width / window_height;
let bounds_x = aspect_ratio;
let bounds_y = 1.0;
// update ball size according to window size
self.radius = 0.1 * (window_width / 800.0); // // Assuming the original window width is 800px
// Bounce off walls
if self.position[0] + self.radius > bounds_x || self.position[0] - self.radius < -bounds_x {
self.velocity[0] = -self.velocity[0] + 0.1 * rand::random::<f32>(); // Add a small random factor to the velocity
self.position[0] = self.position[0].clamp(-bounds_x + self.radius, bounds_x - self.radius);
// assign a new random color when bouncing off the wall
self.color = [
rand::random::<f32>(),
rand::random::<f32>(),
rand::random::<f32>(),
];
}
// if the y position plus the radius is greater than the bounds_y or the y position minus the radius is less than -bounds_y, then bounce off the wall
if self.position[1] + self.radius > bounds_y || self.position[1] - self.radius < -bounds_y {
self.velocity[1] = -self.velocity[1] + 0.1 * rand::random::<f32>(); // Add a small random factor to the velocity
self.position[1] = self.position[1].clamp(-bounds_y + self.radius, bounds_y - self.radius);
// assign a new random color when bouncing off the wall
self.color = [
rand::random::<f32>(),
rand::random::<f32>(),
rand::random::<f32>(),
];
}
}
}
struct State {
surface: wgpu::Surface<'static>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: winit::dpi::PhysicalSize<u32>,
render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
uniforms: Uniforms,
ball: Ball,
last_frame_time: Instant,
}
impl State {
async fn new(window: Arc<Window>) -> Result<Self> {
let size = window.inner_size();
// Create the wgpu instance
let instance = wgpu::Instance::new(&wgpu::InstanceDescriptor {
backends: wgpu::Backends::all(),
..Default::default()
});
let surface = instance.create_surface(window)?;
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await?;
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
label: None,
memory_hints: Default::default(),
trace: wgpu::Trace::default(),
}
)
.await?;
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
surface.configure(&device, &config);
// Create circle vertices (for the ball)
let mut vertices = Vec::new();
let mut indices = Vec::new();
let segments = 32;
let radius = 0.1;
// Center vertex
vertices.push(Vertex {
position: [0.0, 0.0, 0.0],
color: [1.0, 0.2, 0.2], // Orange color
});
// Circle vertices
for i in 0..segments {
let angle = 2.0 * std::f32::consts::PI * i as f32 / segments as f32;
let x = radius * angle.cos();
let y = radius * angle.sin();
vertices.push(Vertex {
position: [x, y, 0.0],
color: [0.1, 0.5, 0.2], // Orange color
});
}
// Create triangles
for i in 0..segments {
indices.push(0); // Center
indices.push(i + 1);
indices.push(if i + 2 > segments { 1 } else { i + 2 });
}
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(&indices),
usage: wgpu::BufferUsages::INDEX,
});
let num_indices = indices.len() as u32;
// Create uniform buffer
let uniforms = Uniforms::new();
let uniform_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Uniform Buffer"),
contents: bytemuck::cast_slice(&[uniforms]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("uniform_bind_group_layout"),
});
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &uniform_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: uniform_buffer.as_entire_binding(),
}],
label: Some("uniform_bind_group"),
});
// Load shader
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&uniform_bind_group_layout],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let ball = Ball::new();
Ok(Self {
surface,
device,
queue,
config,
size,
render_pipeline,
vertex_buffer,
index_buffer,
num_indices,
uniform_buffer,
uniform_bind_group,
uniforms,
ball,
last_frame_time: Instant::now(),
})
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
fn update(&mut self) {
let now = Instant::now();
let dt = (now - self.last_frame_time).as_secs_f32();
self.last_frame_time = now;
// Update ball physics
self.ball.update(dt, self.size.width as f32, self.size.height as f32);
// Update uniforms
self.uniforms.update_position(self.ball.position[0], self.ball.position[1]);
self.queue.write_buffer(
&self.uniform_buffer,
0,
bytemuck::cast_slice(&[self.uniforms]),
);
self.update_vertex_colors();
}
fn update_vertex_colors(&mut self) {
let mut vertices = Vec::new();
let segments = 32; // Number of segments for the circle
let radius = self.ball.radius;
// Center vertex with ball's color
vertices.push(Vertex {
position: [0.0, 0.0, 0.0],
color: self.ball.color,
});
// Circle vertices with ball's color
for i in 0..segments {
let angle = 2.0 * std::f32::consts::PI * i as f32 / segments as f32;
let x = radius * angle.cos();
let y = radius * angle.sin();
vertices.push(Vertex {
position: [x, y, 0.0],
color: self.ball.color,
});
}
// Update the vertex buffer with new colors
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.uniform_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
}
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
}
}
struct App {
state: Option<State>,
window: Option<Arc<Window>>,
}
impl ApplicationHandler for App {
fn resumed(&mut self, event_loop: &ActiveEventLoop) {
let window_attributes = Window::default_attributes()
.with_title("Bouncing Ball")
.with_inner_size(winit::dpi::LogicalSize::new(800, 800))
.with_min_inner_size(winit::dpi::LogicalSize::new(200, 200));
let window = Arc::new(event_loop.create_window(window_attributes).unwrap());
let state = pollster::block_on(State::new(Arc::clone(&window))).unwrap();
self.window = Some(window);
self.state = Some(state);
}
fn window_event(&mut self, event_loop: &ActiveEventLoop, _id: WindowId, event: WindowEvent) {
let Some(state) = &mut self.state else {
return;
};
match event {
WindowEvent::CloseRequested
| WindowEvent::KeyboardInput {
event:
KeyEvent {
state: ElementState::Pressed,
physical_key: PhysicalKey::Code(KeyCode::Escape),
..
},
..
} => event_loop.exit(),
WindowEvent::Resized(physical_size) => {
state.resize(physical_size);
}
WindowEvent::RedrawRequested => {
state.update();
match state.render() {
Ok(_) => {}
Err(wgpu::SurfaceError::Lost) => state.resize(state.size),
Err(wgpu::SurfaceError::OutOfMemory) => event_loop.exit(),
Err(e) => eprintln!("{:?}", e),
}
// Request another frame for continuous animation
if let Some(window) = &self.window {
window.request_redraw();
}
}
_ => {}
}
}
fn about_to_wait(&mut self, _event_loop: &ActiveEventLoop) {
// Request initial redraw
if let Some(window) = &self.window {
window.request_redraw();
}
}
}
fn main() -> Result<()> {
env_logger::init();
let event_loop = EventLoop::new()?;
event_loop.set_control_flow(ControlFlow::Poll);
let mut app = App {
state: None,
window: None,
};
event_loop.run_app(&mut app)?;
Ok(())
}

32
src/shader.wgsl Normal file
View File

@ -0,0 +1,32 @@
// Vertex shader
struct VertexInput {
// position and color attributes
@location(0) position: vec3<f32>, // Position in 3D space
@location(1) color: vec3<f32>, // Color attribute
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>, // Clip space position
@location(0) color: vec3<f32>, // Color output
}
struct Uniforms {
transform: mat4x4<f32>, // Transformation matrix
}
@group(0) @binding(0)
var<uniform> uniforms: Uniforms;
@vertex
fn vs_main(model: VertexInput) -> VertexOutput {
var out: VertexOutput; // Initialize output structure
out.color = model.color; // Pass through color attribute
out.clip_position = uniforms.transform * vec4<f32>(model.position, 1.0); // Transform position by the uniform matrix
return out;
}
// Fragment shader
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
return vec4<f32>(in.color, 1.0);
}